Lakehouse: A New Generation of Open Platforms that Unify
Data Warehousing and Advanced Analytics

Michael Armbrust!, Ali Ghodsi'*?, Reynold Xin!, Matei Zaharia®?
IDatabricks, 2UC Berkeley, 3Stanford University

Abstract

This paper argues that the data warehouse architecture as we know
it today will wither in the coming years and be replaced by a new
architectural pattern, the Lakehouse, which will (i) be based on open
direct-access data formats, such as Apache Parquet, (ii) have first-
class support for machine learning and data science, and (iii) offer
state-of-the-art performance. Lakehouses can help address several
major challenges with data warehouses, including data staleness,
reliability, total cost of ownership, data lock-in, and limited use-case
support. We discuss how the industry is already moving toward
Lakehouses and how this shift may affect work in data management.
We also report results from a Lakehouse system using Parquet that
is competitive with popular cloud data warehouses on TPC-DS.

1 Introduction

This paper argues that the data warehouse architecture as we know
it today will wane in the coming years and be replaced by a new
architectural pattern, which we refer to as the Lakehouse, char-
acterized by (i) open direct-access data formats, such as Apache
Parquet and ORC, (ii) first-class support for machine learning and
data science workloads, and (iii) state-of-the-art performance.

The history of data warehousing started with helping business
leaders get analytical insights by collecting data from operational
databases into centralized warehouses, which then could be used
for decision support and business intelligence (BI). Data in these
warehouses would be written with schema-on-write, which ensured
that the data model was optimized for downstream BI consumption.
We refer to this as the first generation data analytics platforms.

A decade ago, the first generation systems started to face several
challenges. First, they typically coupled compute and storage into an
on-premises appliance. This forced enterprises to provision and pay
for the peak of user load and data under management, which became
very costly as datasets grew. Second, not only were datasets growing
rapidly, but more and more datasets were completely unstructured,
e.g., video, audio, and text documents, which data warehouses could
not store and query at all.

To solve these problems, the second generation data analytics
platforms started offloading all the raw data into data lakes: low-cost
storage systems with a file API that hold data in generic and usually
open file formats, such as Apache Parquet and ORC [8, 9]. This
approach started with the Apache Hadoop movement [5], using the
Hadoop File System (HDFS) for cheap storage. The data lake was a
schema-on-read architecture that enabled the agility of storing any
data at low cost, but on the other hand, punted the problem of data

This article is published under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/). 11th Annual Conference on Innovative
Data Systems Research (CIDR °21), January 11-15, 2021, Online.

quality and governance downstream. In this architecture, a small
subset of data in the lake would later be ETLed to a downstream
data warehouse (such as Teradata) for the most important decision
support and BI applications. The use of open formats also made
data lake data directly accessible to a wide range of other analytics
engines, such as machine learning systems [30, 37, 42].

From 2015 onwards, cloud data lakes, such as S3, ADLS and GCS,
started replacing HDFS. They have superior durability (often >10
nines), geo-replication, and most importantly, extremely low cost
with the possibility of automatic, even cheaper, archival storage,
e.g., AWS Glacier. The rest of the architecture is largely the same in
the cloud as in the second generation systems, with a downstream
data warehouse such as Redshift or Snowflake. This two-tier data
lake + warehouse architecture is now dominant in the industry in
our experience (used at virtually all Fortune 500 enterprises).

This brings us to the challenges with current data architectures.
While the cloud data lake and warehouse architecture is ostensibly
cheap due to separate storage (e.g., S3) and compute (e.g., Redshift),
a two-tier architecture is highly complex for users. In the first gener-
ation platforms, all data was ETLed from operational data systems
directly into a warehouse. In today’s architectures, data is first
ETLed into lakes, and then again ELTed into warehouses, creating
complexity, delays, and new failure modes. Moreover, enterprise
use cases now include advanced analytics such as machine learning,
for which neither data lakes nor warehouses are ideal. Specifically,
today’s data architectures commonly suffer from four problems:

Reliability. Keeping the data lake and warehouse consistent is
difficult and costly. Continuous engineering is required to ETL data
between the two systems and make it available to high-performance
decision support and BI. Each ETL step also risks incurring failures
or introducing bugs that reduce data quality, e.g., due to subtle
differences between the data lake and warehouse engines.

Data staleness. The data in the warehouse is stale compared to
that of the data lake, with new data frequently taking days to load.
This is a step back compared to the first generation of analytics
systems, where new operational data was immediately available for
queries. According to a survey by Dimensional Research and Five-
tran, 86% of analysts use out-of-date data and 62% report waiting
on engineering resources numerous times per month [47].

Limited support for advanced analytics. Businesses want to
ask predictive questions using their warehousing data, e.g., “which
customers should I offer discounts to?” Despite much research on
the confluence of ML and data management, none of the leading ma-
chine learning systems, such as TensorFlow, PyTorch and XGBoost,
work well on top of warehouses. Unlike BI queries, which extract a
small amount of data, these systems need to process large datasets
using complex non-SQL code. Reading this data via ODBC/JDBC
is inefficient, and there is no way to directly access the internal

CIDR ’21, Jan. 2021, Online

& @

Reports

Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia

&« @ & @8 @&

1l
Data Machine Data Machine

Reports Bl Reports giience Learning

Science Learning

@ @ Data Warehouses
Data Warehouses
1 0.4
s —

@ ETL

«

ETL .of;;?ox.|°:°'|
; .

—/\05

0o 1
00

0o
1 1
Tioe

T ' DataLake

S88

Structured Data

(a) First-generation platforms.

@[ﬁ]ﬁ»}@

Structured, Semi-structured & Unstructured Data

(b) Current two-tier architectures.

gécﬂ»@

Structured, Semi-structured & Unstructured Data

(c) Lakehouse platforms.

Figure 1: Evolution of data platform architectures to today’s two-tier model (a-b) and the new Lakehouse model (c).

warehouse proprietary formats. For these use cases, warehouse
vendors recommend exporting data to files, which further increases
complexity and staleness (adding a third ETL step!). Alternatively,
users can run these systems against data lake data in open formats.
However, they then lose rich management features from data ware-
houses, such as ACID transactions, data versioning and indexing.

Total cost of ownership. Apart from paying for continuous ETL,
users pay double the storage cost for data copied to a warehouse,
and commercial warehouses lock data into proprietary formats that
increase the cost of migrating data or workloads to other systems.

A straw-man solution that has had limited adoption is to elimi-
nate the data lake altogether and store all the data in a warehouse
that has built-in separation of compute and storage. We will argue
that this has limited viability, as evidenced by lack of adoption, be-
cause it still doesn’t support managing video/audio/text data easily
or fast direct access from ML and data science workloads.

In this paper, we discuss the following technical question: is it
possible to turn data lakes based on standard open data formats,
such as Parquet and ORC, into high-performance systems that can
provide both the performance and management features of data
warehouses and fast, direct I/O from advanced analytics workloads?
We argue that this type of system design, which we refer to as a
Lakehouse (Fig. 1), is both feasible and is already showing evidence
of success, in various forms, in the industry. As more business appli-
cations start relying on operational data and on advanced analytics,
we believe the Lakehouse is a compelling design point that can
eliminate some of the top challenges with data warehousing.

In particular, we believe that the time for the Lakehouse has come
due to recent solutions that address the following key problems:

1. Reliable data management on data lakes: A Lakehouse
needs to be able to store raw data, similar to today’s data lakes,
while simultaneously supporting ETL/ELT processes that curate
this data to improve its quality for analysis. Traditionally, data lakes
have managed data as “just a bunch of files” in semi-structured for-
mats, making it hard to offer some of the key management features
that simplify ETL/ELT in data warehouses, such as transactions,

rollbacks to old table versions, and zero-copy cloning. However, a
recent family of systems such as Delta Lake [10] and Apache Ice-
berg [7] provide transactional views of a data lake, and enable these
management features. Of course, organizations still have to do the
hard work of writing ETL/ELT logic to create curated datasets with
a Lakehouse, but there are fewer ETL steps overall, and analysts
can also easily and performantly query the raw data tables if they
wish to, much like in first-generation analytics platforms.

2. Support for machine learning and data science: ML sys-
tems’ support for direct reads from data lake formats already places
them in a good position to efficiently access a Lakehouse. In addi-
tion, many ML systems have adopted DataFrames as the abstraction
for manipulating data, and recent systems have designed declarative
DataFrame APIs [11] that enable performing query optimizations
for data accesses in ML workloads. These APIs enable ML workloads
to directly benefit from many optimizations in Lakehouses.

3. SQL performance: Lakehouses will need to provide state-
of-the-art SQL performance on top of the massive Parquet/ORC
datasets that have been amassed over the last decade (or in the
long term, some other standard format that is exposed for direct
access to applications). In contrast, classic data warehouses accept
SQL and are free to optimize everything under the hood, including
proprietary storage formats. Nonetheless, we show that a variety
of techniques can be used to maintain auxiliary data about Par-
quet/ORC datasets and to optimize data layout within these existing
formats to achieve competitive performance. We present results
from a SQL engine over Parquet (the Databricks Delta Engine [19])
that outperforms leading cloud data warehouses on TPC-DS.

In the rest of the paper, we detail the motivation, potential tech-
nical designs, and research implications of Lakehouse platforms.

2 Motivation: Data Warehousing Challenges

Data warehouses are critical for many business processes, but they
still regularly frustrate users with incorrect data, staleness, and
high costs. We argue that at least part of each of these challenges is

Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics

“accidental complexity” [18] from the way enterprise data platforms
are designed, which could be eliminated with a Lakehouse.

First, the top problem reported by enterprise data users today is
usually data quality and reliability [47, 48]. Implementing correct
data pipelines is intrinsically difficult, but today’s two-tier data
architectures with a separate lake and warehouse add extra com-
plexity that exacerbates this problem. For example, the data lake
and warehouse systems might have different semantics in their
supported data types, SQL dialects, etc; data may be stored with
different schemas in the lake and the warehouse (e.g., denormal-
ized in one); and the increased number of ETL/ELT jobs, spanning
multiple systems, increases the probability of failures and bugs.

Second, more and more business applications require up-to-date
data, but today’s architectures increase data staleness by having a
separate staging area for incoming data before the warehouse and
using periodic ETL/ELT jobs to load it. Theoretically, organizations
could implement more streaming pipelines to update the data ware-
house faster, but these are still harder to operate than batch jobs.
In contrast, in the first-generation platforms, warehouse users had
immediate access to raw data loaded from operational systems in
the same environment as derived datasets. Business applications
such as customer support systems and recommendation engines
are simply ineffective with stale data, and even human analysts
querying warehouses report stale data as a major problem [47].

Third, a large fraction of data is now unstructured in many indus-
tries [22] as organizations collect images, sensor data, documents,
etc. Organizations need easy-to-use systems to manage this data,
but SQL data warehouses and their API do not easily support it.

Finally, most organizations are now deploying machine learning
and data science applications, but these are not well served by data
warehouses and lakes. As discussed before, these applications need
to process large amounts of data with non-SQL code, so they cannot
run efficiently over ODBC/JDBC. As advanced analytics systems
continue to develop, we believe that giving them direct access to
data in an open format will be the most effective way to support
them. In addition, ML and data science applications suffer from
the same data management problems that classical applications do,
such as data quality, consistency, and isolation [17, 27, 31], so there
is immense value in bringing DBMS features to their data.

Existing steps towards Lakehouses. Several current industry
trends give further evidence that customers are unsatisfied with the
two-tier lake + warehouse model. First, in recent years, virtually all
the major data warehouses have added support for external tables
in Parquet and ORC format [12, 14, 43, 46]. This allows warehouse
users to also query the data lake from the same SQL engine, but
it does not make data lake tables easier to manage and it does not
remove the ETL complexity, staleness, and advanced analytics chal-
lenges for data in the warehouse. In practice, these connectors also
often perform poorly because the SQL engine is mostly optimized
for its internal data format. Second, there is also broad investment
in SQL engines that run directly against data lake storage, such as
Spark SQL, Presto, Hive, and AWS Athena [3, 11, 45, 50]. However,
these engines alone cannot solve all the problems with data lakes
and replace warehouses: data lakes still lack basic management
features such as ACID transactions and efficient access methods
such as indexes to match data warehouse performance.

CIDR 21, Jan. 2021, Online

3 The Lakehouse Architecture

We define a Lakehouse as a data management system based on low-
cost and directly-accessible storage that also provides traditional
analytical DBMS management and performance features such as
ACID transactions, data versioning, auditing, indexing, caching,
and query optimization. Lakehouses thus combine the key benefits
of data lakes and data warehouses: low-cost storage in an open
format accessible by a variety of systems from the former, and
powerful management and optimization features from the latter.
The key question is whether one can combine these benefits in an
effective way: in particular, Lakehouses’ support for direct access
means that they give up some aspects of data independence, which
has been a cornerstone of relational DBMS design.

We note that Lakehouses are an especially good fit for cloud envi-
ronments with separate compute and storage: different computing
applications can run on-demand on completely separate computing
nodes (e.g., a GPU cluster for ML) while directly accessing the same
storage data. However, one could also implement a Lakehouse over
an on-premise storage system such as HDFS.

In this section, we sketch one possible design for Lakehouse
systems, based on three recent technical ideas that have appeared
in various forms throughout the industry. We have been building
towards a Lakehouse platform based on this design at Databricks
through the Delta Lake, Delta Engine and Databricks ML Runtime
projects [10, 19, 38]. Other designs may also be viable, however, as
are other concrete technical choices in our high-level design (e.g.,
our stack at Databricks currently builds on the Parquet storage
format, but it is possible to design a better format). We discuss
several alternatives and future directions for research.

3.1 Implementing a Lakehouse System

The first key idea we propose for implementing a Lakehouse is to
have the system store data in a low-cost object store (e.g., Amazon
S3) using a standard file format such as Apache Parquet, but imple-
ment a transactional metadata layer on top of the object store that
defines which objects are part of a table version. This allows the
system to implement management features such as ACID transac-
tions or versioning within the metadata layer, while keeping the
bulk of the data in the low-cost object store and allowing clients to
directly read objects from this store using a standard file format in
most cases. Several recent systems, including Delta Lake [10] and
Apache Iceberg [7] have successfully added management features
to data lakes in this fashion; for example, Delta Lake is now used
in about half of Databricks’ workload, by thousands of customers.
Although a metadata layer adds management capabilities, it is
not sufficient to achieve good SQL performance. Data warehouses
use several techniques to get state-of-the-art performance, such as
storing hot data on fast devices such as SSDs, maintaining statistics,
building efficient access methods such as indexes, and co-optimizing
the data format and compute engine. In a Lakehouse based on exist-
ing storage formats, it is not possible to change the format, but we
show that it is possible to implement other optimizations that leave
the data files unchanged, including caching, auxiliary data structures
such as indexes and statistics, and data layout optimizations.
Finally, Lakehouses can both speed up advanced analytics work-
loads and give them better data management features thanks to

CIDR ’21, Jan. 2021, Online

a8 @ e

R N Machine
€POTS science Learning
[SOL APIs] Declarative
DataFrame APls
[Metadata APIs]

Transaction mgmt.,
governance, versioning,
auxiliary datastructures

—

Data filesin open
y

: format (e.g. Parquet)

°
' ' Data Lake H

@lﬁ]cﬂ»)@

Structured, Semi-structured & Unstructured Data

Figure 2: Example Lakehouse system design, with key com-
ponents shown in green. The system centers around a meta-
data layer such as Delta Lake that adds transactions, version-
ing, and auxiliary data structures over files in an open for-
mat, and can be queried with diverse APIs and engines.

the development of declarative DataFrame APIs [11, 37]. Many ML
libraries, such as TensorFlow and Spark MLIib, can already read
data lake file formats such as Parquet [30, 37, 42]. Thus, the simplest
way to integrate them with a Lakehouse would be to query the
metadata layer to figure out which Parquet files are currently part
of a table, and simply pass those to the ML library. However, most
of these systems support a DataFrame API for data preparation
that creates more optimization opportunities. DataFrames were
popularized by R and Pandas [40] and simply give users a table
abstraction with various transformation operators, most of which
map to relational algebra. Systems such as Spark SQL have made
this API declarative by lazily evaluating the transformations and
passing the resulting operator plan to an optimizer [11]. These APIs
can thus leverage the new optimization features in a Lakehouse,
such as caches and auxiliary data, to further accelerate ML.
Figure 2 shows how these ideas fit together into a Lakehouse
system design. In the next three sections, we expand on these
technical ideas in more detail and discuss related research questions.

3.2 Metadata Layers for Data Management

The first component that we believe will enable Lakehouses is
metadata layers over data lake storage that can raise its abstrac-
tion level to implement ACID transactions and other management
features. Data lake storage systems such as S3 or HDFS only pro-
vide a low-level object store or filesystem interface where even
simple operations, such as updating a table that spans multiple files,
are not atomic. Organizations soon began designing richer data
management layers over these systems, starting with Apache Hive
ACID [33], which tracks which data files are part of a Hive table at
a given table version using an OLTP DBMS and allows operations
to update this set transactionally. In recent years, new systems
have provided even more capabilities and improved scalability. In

Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia

2016, Databricks began developing Delta Lake [10], which stores
the information about which objects are part of a table in the data
lake itself as a transaction log in Parquet format, enabling it to scale
to billions of objects per table. Apache Iceberg [7], which started at
Netflix, uses a similar design and supports both Parquet and ORC
storage. Apache Hudi [6], which started at Uber, is another system
in this area focused on simplifying streaming ingest into data lakes,
although it does not support concurrent writers.

Experience with these systems has shown that they generally
provide similar or better performance to raw Parquet/ORC data
lakes, while adding highly useful management features such as
transactions, zero-copy coning and time travel to past versions of a
table [10]. In addition, they are easy to adopt for organizations that
already have a data lake: for example, Delta Lake can convert an
existing directory of Parquet files into a Delta Lake table with zero
copies just by adding a transaction log that starts with an entry
that references all the existing files. As a result, organizations are
rapidly adopting these metadata layers: for example, Delta Lake
grew to cover half the compute-hours on Databricks in three years.

In addition, metadata layers are a natural place to implement data
quality enforcement features. For example, Delta Lake implements
schema enforcement to ensure that the data uploaded to a table
matches its schema, and constraints API [24] that allows table own-
ers to set constraints on the ingested data (e.g., country can only
be one of a list of values). Delta’s client libraries will automatically
reject records that violate these expectations or quarantine them
in a special location. Customers have found these simple features
very useful to improve the quality of data lake based pipelines.

Finally, metadata layers are a natural place to implement gover-
nance features such as access control and audit logging. For example,
a metadata layer can check whether a client is allowed to access a
table before granting it credentials to read the raw data in the table
from a cloud object store, and can reliably log all accesses.

Future Directions and Alternative Designs. Because metadata
layers for data lakes are a fairly new development, there are many
open questions and alternative designs. For example, we designed
Delta Lake to store its transaction log in the same object store that it
runs over (e.g., S3) in order to simplify management (removing the
need to run a separate storage system) and offer high availability
and high read bandwidth to the log (the same as the object store).
However, this limits the rate of transactions/second it can support
due to object stores’ high latency. A design using a faster storage
system for the metadata may be preferable in some cases. Likewise,
Delta Lake, Iceberg and Hudi only support transactions on one
table at a time, but it should be possible to extend them to support
cross-table transactions. Optimizing the format of transaction logs
and the size of objects managed are also open questions.

3.3 SQL Performance in a Lakehouse

Perhaps the largest technical question with the Lakehouse approach
is how to provide state-of-the-art SQL performance while giving up
a significant portion of the data independence in a traditional DBMS
design. The answer clearly depends on a number of factors, such as
what hardware resources we have available (e.g., can we implement
a caching layer on top of the object store) and whether we can
change the data object storage format instead of using existing
standards such as Parquet and ORC (new designs that improve over

Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics

TPC-DS Power Test Duration (s)

40000 57285
30000
20000
10000 7995 7143 5793 3302 3252
DwW1 Dw2 DW3 DW4 Delta Engine Delta Engine
(on-demand) (spot)
TPC-DS Power Test Cost ($)
$600 §570
$400 $286
$206
$200 SB3 $104
O
» 1R [-,
DWI Dw2 DW3 DW4 Delta Engine Delta Engine

(on-demand) (spot)

Figure 3: TPC-DS power score (time to run all queries) and
cost at scale factor 30K using Delta Engine vs. popular cloud
data warehouses on AWS, Azure and Google Cloud.

these formats continue to emerge [15, 28]). Regardless of the exact
design, however, the core challenge is that the data storage format
becomes part of the system’s public API to allow fast direct access,
unlike in a traditional DBMS.

We propose several techniques to implement SQL performance
optimizations in a Lakehouse independent of the chosen data for-
mat, which can therefore be applied either with existing or future
formats. We have also implemented these techniques within the
Databricks Delta Engine [19] and show that they yield competitive
performance with popular cloud data warehouses, though there
is plenty of room for further performance optimizations. These
format-independent optimizations are:

Caching: When using a transactional metadata layer such as Delta
Lake, it is safe for a Lakehouse system to cache files from the cloud
object store on faster storage devices such as SSDs and RAM on the
processing nodes. Running transactions can easily determine when
cached files are still valid to read. Moreover, the cache can be in a
transcoded format that is more efficient for the query engine to run
on, matching any optimizations that would be used in a traditional
“closed-world” data warehouse engine. For example, our cache at
Databricks partially decompresses the Parquet data it loads.

Auxiliary data: Even though a Lakehouse needs to expose the
base table storage format for direct I/O, it can maintain other data
that helps optimize queries in auxiliary files that it has full control
over. In Delta Lake and Delta Engine, we maintain column min-max
statistics for each data file in the table within the same Parquet
file used to store the transaction log, which enables data skipping
optimizations when the base data is clustered by particular columns.
We are also implementing a Bloom filter based index. One can
imagine implementing a wide range of auxiliary data structures
here, similar to proposals for indexing “raw” data [1, 2, 34].

Data layout: Data layout plays a large role in access performance.
Even when we fix a storage format such as Parquet, there are
multiple layout decisions that can be optimized by the Lakehouse
system. The most obvious is record ordering: which records are

CIDR 21, Jan. 2021, Online

clustered together and hence easiest to read together. In Delta Lake,
we support ordering records using individual dimensions or space-
filling curves such as Z-order [39] and Hilbert curves to provide
locality across multiple dimensions. One can also imagine new
formats that support placing columns in different orders within each
data file, choosing compression strategies differently for various
groups of records, or other strategies [28].

These three optimizations work especially well together for the
typical access patterns in analytical systems. In typical workloads,
most queries tend to be concentrated against a “hot” subset of the
data, which the Lakehouse can cache using the same optimized data
structures as a closed-world data warehouse to provide competitive
performance. For “cold” data the a cloud object store, the main
determinant of performance is likely to be the amount of data read
per query. In that case, the combination of data layout optimizations
(which cluster co-accessed data) and auxiliary data structures such
as zone maps (which let the engine rapidly figure out what ranges
of the data files to read) can allow a Lakehouse system to minimize
I/O the same way a closed-world proprietary data warehouse would,
despite running against a standard open file format.

Performance Results. At Databricks, we combined these three
Lakehouse optimizations with a new C++ execution engine for
Apache Spark called Delta Engine [19]. To evaluate the feasibility
of the Lakehouse architecture, Figure 3 compares Delta Engine on
TPC-DS at scale factor 30,000 with four widely used cloud data
warehouses (from cloud providers as well as third-party compa-
nies that run over public clouds), using comparable clusters on
AWS, Azure and Google Cloud with 960 vCPUs each and local SSD
storage.! We report the time to run all 99 queries as well as the
total cost for customers in each service’s pricing model (Databricks
lets users choose spot and on-demand instances, so we show both).
Delta Engine provides comparable or better performance than these
systems at a lower price point.

Future Directions and Alternative Designs. Designing perfor-
mant yet directly-accessible Lakehouse systems is a rich area for
future work. One clear direction that we have not explored yet
is designing new data lake storage formats that will work better
in this use case, e.g., formats that provide more flexibility for the
Lakehouse system to implement data layout optimizations or in-
dexes over or are simply better suited to modern hardware. Of
course, such new formats may take a while for processing engines
to adopt, limiting the number of clients that can read from them,
but designing a high quality directly-accessible open format for
next generation workloads is an important research problem.

Even without changing the data format, there are many types
of caching strategies, auxiliary data structures and data layout
strategies to explore for Lakehouses [4, 49, 53]. Determining which
ones are likely to be most effective for massive datasets in cloud
object stores is an open question.

Finally, another exciting research direction is determining when
and how to use serverless computing systems to answer queries [41]
and optimizing the storage, metadata layer, and query engine de-
signs to minimize latency in this case.

!We started all systems with data cached on SSDs when applicable, because some of
the warehouses we compared with only supported node-attached storage. However,
Delta Engine was only 18% slower when starting with a cold cache.

CIDR ’21, Jan. 2021, Online

User program Lazily evaluated query plan

users = spark.table(“users”) ‘ PROJECT(NULL — 0)

- : — " |
buygr‘s = user‘s[user‘s{.km” = ‘bﬂye:]' e PROJECT(date, zip, .
train_set = buyers[“date”, “zip”, “price”] |
.fillna(@) SELECT(kind = “buyer’)
|

users

DELTA LAKE

clientlibrary

model.fit(train_set)

Optimized execution using
cache, statistics, index, etc

Figure 4: Execution of the declarative DataFrame API used
in Spark MLIib. The DataFrame operations in user code ex-
ecute lazily, allowing the Spark engine to capture a query
plan for the data loading computation and pass it to the
Delta Lake client library. This library queries the metadata
layer to determine which partitions to read, use caches, etc.

3.4 Efficient Access for Advanced Analytics

As we discussed earlier in the paper, advanced analytics libraries are
usually written using imperative code that cannot run as SQL, yet
they need to access large amounts of data. There is an interesting
research question in how to design the data access layers in these
libraries to maximize flexibility for the code running on top but still
benefit from optimization opportunities in a Lakehouse.

One approach that we’ve had success with is offering a declara-
tive version of the DataFrame APIs used in these libraries, which
maps data preparation computations into Spark SQL query plans
and can benefit from the optimizations in Delta Lake and Delta
Engine. We used this approach in both Spark DataFrames [11] and
in Koalas [35], a new DataFrame API for Spark that offers improved
compatibility with Pandas. DataFrames are the main data type used
to pass input into the ecosystem of advanced analytics libraries for
Apache Spark, including MLIib [37], GraphFrames [21], SparkR [51]
and many community libraries, so all of these workloads can enjoy
accelerated I/O if we can optimize the DataFrame computation.
Spark’s query planner pushes selections and projections in the
user’s DataFrame computation directly into the “data source” plu-
gin class for each data source read. Thus, in our implementation of
the Delta Lake data source, we leverage the caching, data skipping
and data layout optimizations described in Section 3.3 to acceler-
ate these reads from Delta Lake and thus accelerate ML and data
science workloads, as illustrated in Figure 4.

Machine learning APIs are quickly evolving, however, and there
are also other data access APIs, such as TensorFlow’s tf.data, that
do not attempt to push query semantics into the underlying storage
system. Many of these APIs also focus on overlapping data loading
on the CPU with CPU-to-GPU transfers and GPU computation,
which has not received much attention in data warehouses. Recent
systems work has shown that keeping modern accelerators well-
utilized, especially for ML inference, can be a difficult problem [44],
so Lakehouse access libraries will need to tackle this challenge.

Future Directions and Alternative Designs. Apart from the

questions about existing APIs and efficiency that we have just dis-
cussed, we can explore radically different designs for data access

Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia

interfaces from ML. For example, recent work has proposed “fac-
torized ML” frameworks that push ML logic into SQL joins, and
other query optimizations that can be applied for ML algorithms
implemented in SQL [36]. Finally, we still need standard interfaces
to let data scientists take full advantage of the powerful data man-
agement capabilities in Lakehouses (or even data warehouses). For
example, at Databricks, we have integrated Delta Lake with the ML
experiment tracking service in MLflow [52] to let data scientists
easily track the table versions used in an experiment and reproduce
that version of the data later. There is also an emerging abstraction
of feature stores in the industry as a data management layer to
store and update the features used in an ML application 26, 27, 31],
which would benefit from using the standard DBMS functions in a
Lakehouse design, such as transactions and data versioning.

4 Research Questions and Implications

Beyond the research challenges that we raised as future directions in
Sections 3.2-3.4, Lakehouses raise several other research questions.
In addition, the industry trend toward increasingly feature-rich
data lakes has implications for other areas of data systems research.

Are there other ways to achieve the Lakehouse goals? One
can imagine other means to achieve the primary goals of the Lake-
house, such as buildimg a massively parallel serving layer for a data
warehouse that can support parallel reads from advanced analytics
workloads. However, we believe that such infrastructure will be
significantly more expensive to run, harder to manage, and likely
less performant than giving workloads direct access to the object
store. We have not seen broad deployment of systems that add
this type of serving layer, such as Hive LLAP [32]. Moreover, this
approach punts the problem of selecting an efficient data format for
reads to the serving layer, and this format still needs to be easy to
transcode from the warehouse’s internal format. The main draws
of cloud object stores are their low cost, high bandwidth access
from elastic workloads, and extremely high availability; all three
get worse with a separate serving layer in front of the object store.

Beyond the performance, availability, cost and lock-in challenges
with these alternate approaches, there are also important gover-
nance reasons why enterprises may prefer to keep their data in
an open format. With increasing regulatory requirements about
data management, organizations may need to search through old
datasets, delete various data, or change their data processing in-
frastructure on short notice, and standardizing on an open format
means that they will always have direct access to the data without
blocking on a vendor. The long-term trend in the software industry
has been towards open data formats, and we believe that this trend
will continue for enterprise data.

What are the right storage formats and access APIs? The ac-
cess interface to a Lakehouse includes the raw storage format, client
libraries to directly read this format (e.g., when reading into Ten-
sorFlow), and a high-level SQL interface. There are many different
ways to place rich functionality across these layers, such as stor-
age schemes that provide more flexibility to the system by asking
readers to perform more sophisticated, “programmable” decoding
logic [28]. It remains to be seen which combination of storage
formats, metadata layer designs, and access APIs works best.

Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics

How does the Lakehouse affect other data management re-
search and trends? The prevalence of data lakes and the increas-
ing use of rich management interfaces over them, whether they be
metadata layers or the full Lakehouse design, has implications for
several other areas of data management research.

Polystores were designed to solve the difficult problem of query-
ing data across disparate storage engines [25]. This problem will
persist in enterprises, but the increasing fraction of data that is
available in an open format in a cloud data lake means that many
polystore queries could be answered by running directly against
the cloud object store, even if the underlying data files are part of
logically separate Lakehouse deployments.

Data integration and cleaning tools can also be designed to run
in place over a Lakehouse with fast parallel access to all the data,
which may enable new algorithms such as running large joins and
clustering algoirhtms over many of the datasets in an organization.

HTAP systems could perhaps be built as “bolt-on” layers in front
of a Lakehouse by archiving data directly into a Lakehouse system
using its transaction management APIs. The Lakehouse would be
able to query consistent snapshots of the data.

Data management for ML may also become simpler and more
powerful if implemented over a Lakehouse. Today, organizations
are building a wide range of ML-specific data versioning and “fea-
ture store” systems [26, 27, 31] that reimplement standard DBMS
functionality. It might be simpler to just use a data lake abstraction
with DBMS management functions built-in to implement feature
store functionality. At the same time, declarative ML systems such
as factorized ML [36] could likely run well against a Lakehouse.

Cloud-native DBMS designs such as serverless engines [41] will
need to integrate with richer metadata management layers such
as Delta Lake instead of just scanning over raw files in a data lake,
but may be able to achieve increased performance.

Finally, there is ongoing discussion in the industry about how
to organize data engineering processes and teams, with concepts
such as the “data mesh” [23], where separate teams own different
data products end-to-end, gaining popularity over the traditional
“central data team” approach. Lakehouse designs lend themselves
easily to distributed collaboration structures because all datasets are
directly accessible from an object store without having to onboard
users on the same compute resources, making it straightforward to
share data regardless of which teams produce and consume it.

5 Related Work

The Lakehouse approach builds on many research efforts to design
data management systems for the cloud, starting with early work to
use S3 as a block store in a DBMS [16] and to “bolt-on” consistency
over cloud object stores [13]. It also builds heavily on research to
accelerate query processing by building auxiliary data structures
around a fixed data format [1, 2, 34, 53].

The most closely related systems are “cloud-native” data ware-
houses backed by separate storage [20, 29] and data lake systems
like Apache Hive [50]. Cloud-native warehouses such as Snowflake
and BigQuery [20, 29] have seen good commercial success, but they
are still not the primary data store in most large organizations: the
majority of data continues to be in data lakes, which can easily store
the time-series, text, image, audio and semi-structured formats that
high-volume enterprise data arrives in. As a result, cloud warehouse

CIDR 21, Jan. 2021, Online

systems have all added support to read external tables in data lake
formats [12, 14, 43, 46]. However, these systems cannot provide any
management features over the data in data lakes (e.g., implement
ACID transactions over it) the same way they do for their internal
data, so using them with data lakes continues to be difficult and
error-prone. Data warehouses are also not a good fit for large-scale
ML and data science workloads due to the inefficiency in streaming
data out of them compared to direct object store access.

On the other hand, while early data lake systems purposefully
cut down the feature set of a relational DBMS for ease of imple-
mentation, the trend in all these systems has been to add ACID
support [33] and increasingly rich management and performance
features [6, 7, 10]. In this paper, we extrapolate this trend to discuss
what technical designs may allow Lakehouse systems to completely
replace data warehouses, show quantitative results from a new
query engine optimized for a Lakehouse, and sketch some signifi-
cant research questions and design alternatives in this domain.

6 Conclusion

We have argued that a unified data platform architecture that im-
plements data warehousing functionality over open data lake file
formats can provide competitive performance with today’s data
warehouse systems and help address many of the challenges facing
data warehouse users. Although constraining a data warehouses’s
storage layer to open, directly-accessible files in a standard format
appears like a significant limitation at first, optimizations such as
caching for hot data and data layout optimization for cold data can
allow Lakehouse systems to achieve competitive performance. We
believe that the industry is likely to converge towards Lakehouse
designs given the vast amounts of data already in data lakes and
the opportunity to greatly simplify enterprise data architectures.

Acknowledgements

We thank the Delta Engine, Delta Lake, and Benchmarking teams at
Databricks for their contributions to the results we discuss in this
work. Awez Syed, Alex Behm, Greg Rahn, Mostafa Mokhtar, Peter
Boncz, Bharath Gowda, Joel Minnick and Bart Samwel provided
valuable feedback on the ideas in this paper. We also thank the
CIDR reviewers for their feedback.

References

[1] L Alagiannis, R. Borovica-Gajic, M. Branco, S. Idreos, and A. Ailamaki. NoDB:
Efficient query execution on raw data files. CACM, 58(12):112-121, Nov. 2015.

[2] L Alagiannis, S. Idreos, and A. Ailamaki. H20: a hands-free adaptive store. In
SIGMOD, 2014.

[3] Amazon Athena. https://aws.amazon.com/athena/.

[4] G. Ananthanarayanan, A. Ghodsi, A. Warfield, D. Borthakur, S. Kandula,
S. Shenker, and I. Stoica. PACMan: Coordinated memory caching for parallel
jobs. In NSDI, pages 267-280, 2012.

[5] Apache Hadoop. https://hadoop.apache.org.

[6] Apache Hudi. https://hudi.apache.org.

[7] Apache Iceberg. https://iceberg.apache.org.

] Apache ORC. https://orc.apache.org.

[9] Apache Parquet. https://parquet.apache.org.

] M. Armbrust, T. Das, L. Sun, B. Yavuz, S. Zhu, M. Murthy, J. Torres, H. van Hovell,
A. Tonescu, A. undefineduszczak, M. undefinedwitakowski, M. Szafranski, X. Li,
T. Ueshin, M. Mokhtar, P. Boncz, A. Ghodsi, S. Paranjpye, P. Senster, R. Xin, and
M. Zaharia. Delta Lake: High-performance ACID table storage over cloud object
stores. In VLDB, 2020.

[11] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, and M. Zaharia. Spark SQL: Relational data processing
in Spark. In SIGMOD, 2015.

https://aws.amazon.com/athena/
https://hadoop.apache.org
https://hudi.apache.org
https://iceberg.apache.org
https://orc.apache.org
https://parquet.apache.org

CIDR ’21, Jan. 2021, Online

[12]
[13]

[14

[15]
[16]
[17]
(18]
[19]

[20]

[21]

[22]
[23]

[24]

[32]
[33]

[34

[35]
[36]

[37]

[38

[39]

[40

[42]
[43]

[44

[45

[46

[47

Azure Synapse: Create external file format. https://docs.microsoft.com/en-us/
sql/t-sql/statements/create-external-file-format-transact-sql.

P. Bailis, A. Ghodsi, J. Hellerstein, and I. Stoica. Bolt-on causal consistency. pages
761-772, 06 2013.

BigQuery: Creating a table definition file for an external data source. https:
//cloud.google.com/bigquery/external-table-definition, 2020.

P. Boncz, T. Neumann, and V. Leis. FSST: Fast random access string compression.
In VLDB, 2020.

M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska. Building a database
on S3. In SIGMOD, pages 251-264, 01 2008.

E. Breck, M. Zinkevich, N. Polyzotis, S. Whang, and S. Roy. Data validation for
machine learning. In SysML, 2019.

F. Brooks, Jr. No silver bullet — essence and accidents of software engineering.
IEEE Computer, 20:10-19, April 1987.

A. Conway and J. Minnick. Introducing Delta Engine. https://databricks.com/
blog/2020/06/24/introducing-delta-engine.html.

B. Dageville, J. Huang, A. Lee, A. Motivala, A. Munir, S. Pelley, P. Povinec, G. Rahn,
S. Triantafyllis, P. Unterbrunner, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, and M. Hentschel. The Snowflake elastic
data warehouse. pages 215-226, 06 2016.

A. Dave, A. Jindal, L. E. Li, R. Xin, J. Gonzalez, and M. Zaharia. GraphFrames:
An integrated API for mixing graph and relational queries. In Proceedings of
the Fourth International Workshop on Graph Data Management Experiences and
Systems, GRADES 16, New York, NY, USA, 2016. Association for Computing
Machinery.

D. Davis. Al unleashes the power of unstructured data. https://www.cio.com/
article/3406806/, 2019.

Z. Dehghani. How to move beyond a monolithic data lake to a distributed data
mesh. https://martinfowler.com/articles/data-monolith- to-mesh.html, 2019.
Delta Lake constraints. https://docs.databricks.com/delta/delta-constraints.html,
2020.

J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner,
S. Madden, D. Maier, T. Mattson, and S. Zdonik. The BigDAWG polystore system.
SIGMOD Rec., 44(2):11-16, Aug. 2015.

Data Vesion Control (DVC). https://dvc.org.

Feast: Feature store for machine learning. https://feast.dev, 2020.

B. Ghita, D. G. Tomé, and P. A. Boncz. White-box compression: Learning and
exploiting compact table representations. In CIDR. www.cidrdb.org, 2020.
Google BigQuery. https://cloud.google.com/bigquery.

Getting data into your H20 cluster. https://docs.h20.ai/h20/latest-stable/h20-
docs/getting-data-into-h2o.html, 2020.

K. Hammar and J. Dowling. Feature store: The missing data layer in ML
pipelines? https://www.logicalclocks.com/blog/feature-store-the-missing-data-
layer-in-ml-pipelines, 2018.

Hive LLAP. https://cwiki.apache.org/confluence/display/Hive/LLAP, 2020.
Hive ACID documentation. https://docs.cloudera.com/HDPDocuments/HDP3/
HDP-3.1.5/using-hiveql/content/hive_3_internals.html.

S.Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here are my data files. here
are my queries. where are my results? In CIDR, 2011.

koalas library. https://github.com/databricks/koalas, 2020.

S.Li, L. Chen, and A. Kumar. Enabling and optimizing non-linear feature inter-
actions in factorized linear algebra. In SIGMOD, page 1571-1588, 2019.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia,
and A. Talwalkar. MLlib: Machine learning in Apache Spark. J. Mach. Learn. Res.,
17(1):1235-1241, Jan. 2016.
Databricks ML runtime.
runtime.

G. M. Morton. A computer oriented geodetic data base; and a new technique in
file sequencing. IBM Technical Report, 1966.

pandas Python data analysis library. https://pandas.pydata.org, 2017.

M. Perron, R. Castro Fernandez, D. DeWitt, and S. Madden. Starling: A scalable
query engine on cloud functions. In SIGMOD, page 131-141, 2020.

Petastorm. https://github.com/uber/petastorm.

Redshift CREATE EXTERNAL TABLE. https://docs.aws.amazon.com/redshift/
latest/dg/r_CREATE_EXTERNAL_TABLE html, 2020.

D.Richins, D. Doshi, M. Blackmore, A. Thulaseedharan Nair, N. Pathapati, A. Patel,
B. Daguman, D. Dobrijalowski, R. Illikkal, K. Long, D. Zimmerman, and V. Janapa
Reddi. Missing the forest for the trees: End-to-end ai application performance in
edge data centers. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 515-528, 2020.

R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun, N. Yegitbasi,
H. Jin, E. Hwang, N. Shingte, and C. Berner. Presto: SQL on everything. In ICDE,
pages 1802-1813, April 2019.

Snowflake CREATE EXTERNAL TABLE. https://docs.snowflake.com/en/sql-
reference/sql/create-external-table.html, 2020.

Fivetran data analyst survey. https://fivetran.com/blog/analyst-survey, 2020.

https://databricks.com/product/machine-learning-

[48
[49
[50

[51

[53

]

Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia

M. Stonebraker. Why the ’data lake’ is really a "data swamp’. BLOG@CACM,
2014.

L. Sun, M. J. Franklin, J. Wang, and E. Wu. Skipping-oriented partitioning for
columnar layouts. Proc. VLDB Endow., 10(4):421-432, Nov. 2016.

A. Thusoo et al. Hive - a petabyte scale data warehouse using Hadoop. In ICDE,
pages 996-1005. IEEE, 2010.

S. Venkataraman, Z. Yang, D. Liu, E. Liang, H. Falaki, X. Meng, R. Xin, A. Ghodsi,
M. Franklin, I Stoica, and M. Zaharia. SparkR: Scaling R programs with Spark. In
Proceedings of the 2016 International Conference on Management of Data, SIGMOD
’16, page 1099-1104, New York, NY, USA, 2016. Association for Computing
Machinery.

M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. Hong, A. Konwinski, S. Murching,
T. Nykodym, P. Ogilvie, M. Parkhe, F. Xie, and C. Zumar. Accelerating the machine
learning lifecycle with mlflow. IEEE Data Eng. Bull., 41:39-45, 2018.

M. Ziauddin, A. Witkowski, Y. J. Kim, D. Potapov, J. Lahorani, and M. Kr-
ishna. Dimensions based data clustering and zone maps. Proc. VLDB Endow.,
10(12):1622-1633, Aug. 2017.

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-file-format-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-file-format-transact-sql
https://cloud.google.com/bigquery/external-table-definition
https://cloud.google.com/bigquery/external-table-definition
https://databricks.com/blog/2020/06/24/introducing-delta-engine.html
https://databricks.com/blog/2020/06/24/introducing-delta-engine.html
https://www.cio.com/article/3406806/
https://www.cio.com/article/3406806/
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://docs.databricks.com/delta/delta-constraints.html
https://dvc.org
https://feast.dev
https://cloud.google.com/bigquery
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/getting-data-into-h2o.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/getting-data-into-h2o.html
https://www.logicalclocks.com/blog/feature-store-the-missing-data-layer-in-ml-pipelines
https://www.logicalclocks.com/blog/feature-store-the-missing-data-layer-in-ml-pipelines
https://cwiki.apache.org/confluence/display/Hive/LLAP
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.5/using-hiveql/content/hive_3_internals.html
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.5/using-hiveql/content/hive_3_internals.html
https://github.com/databricks/koalas
https://databricks.com/product/machine-learning-runtime
https://databricks.com/product/machine-learning-runtime
https://github.com/uber/petastorm
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html
https://docs.snowflake.com/en/sql-reference/sql/create-external-table.html
https://docs.snowflake.com/en/sql-reference/sql/create-external-table.html
https://fivetran.com/blog/analyst-survey

	Abstract
	1 Introduction
	2 Motivation: Data Warehousing Challenges
	3 The Lakehouse Architecture
	3.1 Implementing a Lakehouse System
	3.2 Metadata Layers for Data Management
	3.3 SQL Performance in a Lakehouse
	3.4 Efficient Access for Advanced Analytics

	4 Research Questions and Implications
	5 Related Work
	6 Conclusion
	References

